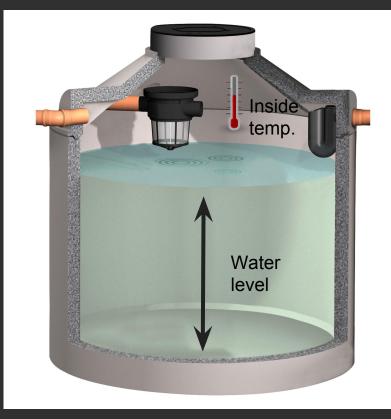
Cistern 4.0

Fast Prototyping with ESP32 and Security in Mind

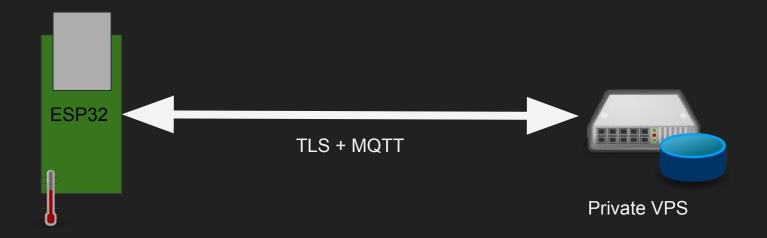

Stefan Smarzly

Outline

- 1. Motivation & Goals
- 2. System Architecture
- 3. Challenges & Lessons Learned
- 4. Demo

Current State & Motivation

- Cistern collects rainwater for garden watering
- Being too empty causes trouble with pump
- **But:** being quite empty can provide some buffer against heavy rain falls with an over-occupied sewerage
- \rightarrow Live water level is useful


Copyright base image: <u>https://www.zisternenhandel.de/zisterne-betonzisterne-inkl-zister</u> <u>nenfilter-set-inox/a-226/</u>

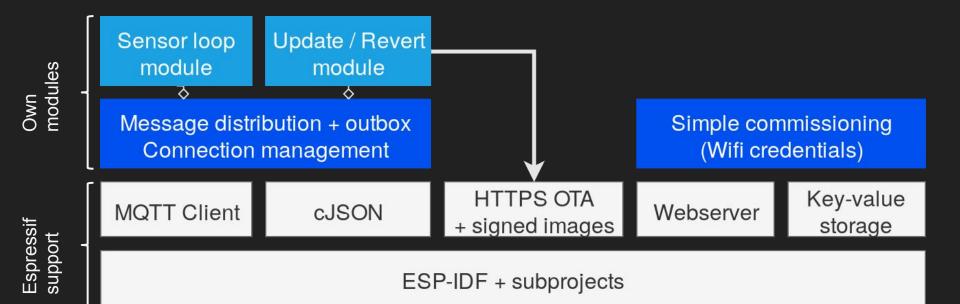
Goals

- Measure & log water level and temperature
- Secure (Network & infrastructure layer)
- Individual update & rollback
- Easy to build with few building blocks (HW & SW)

Architecture

- Centralized (or typical IoT) approach for sake of easiness during ramp-up
- Self-hosted infrastructure

Hardware: ESP32 + Ultrasound + Temperature


Few components to make a full-featured product

- ESP32-WROOM-32 board
- Ultrasound distance module: <u>JSN-SR04T</u>
 <u>2.0</u>
- One-wire temperature sensors: <u>DS18B20</u>
- Buck converter: $12V \rightarrow 5V$
- Few other small parts: <u>logic level shifter</u>, capacitor, transistor, resistors

Put everything in a weather-resistant box

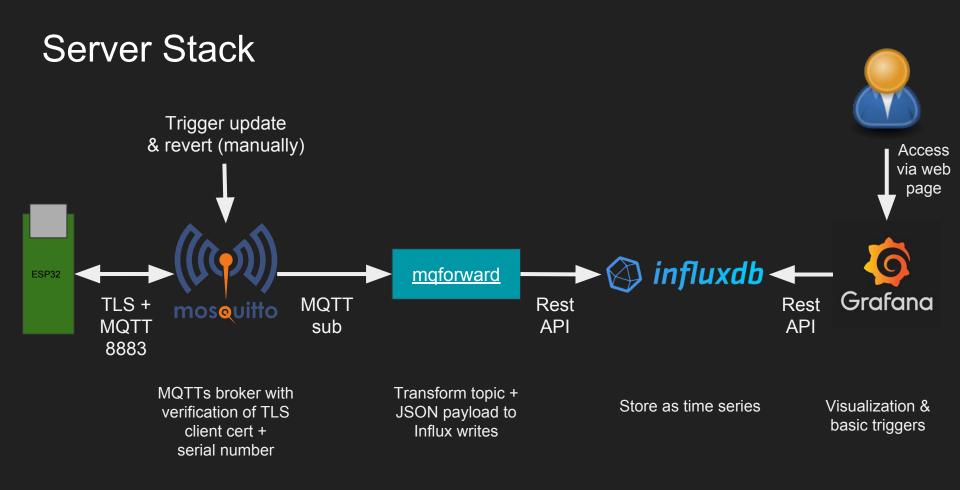
ESP32 Software: Building Blocks

ESP-IDF: FreeRTOS with multi-core support adapted for ESP32

Insight: Sensor Loop

- Adopt Zephyr's
 - Device model
 - Sensor API
- Enables batch processing and clean code

```
static const struct sensor query sensor query table[]
        .ch = SENSOR CHAN DISTANCE,
        .precision = 3,
        .update threshold = 0.007,
        .sensor type = "level",
        .unit = "m",
        .dev = "TEMPERATURE 0",
        .ch = SENSOR CHAN AMBIENT TEMP,
        . precision = 2,
        .update threshold = 0.07,
        .sensor type = "inside temp",
        .dev = "TEMPERATURE 1",
        .ch = SENSOR CHAN AMBIENT TEMP,
        .precision = 2,
        .update threshold = 0.07,
        .sensor type = "outside temp",
```


Securing the Connection

- **CIA**: Confidentiality, Integrity, Authenticity
- TLS Mutual Authentication with x509 client certificates
- Client certs encode serial number as CNAME for authentication
- Certificate Chain of Trust

Certificate Chain of Trust

Int Int for ge pu ris

Server Cert:	mqtt1.in	ngress.mycistern.de				Device Cert: ZI	Device Cert: ZISTERNE0001			
Issuer's nam	ne					Issuer's name				
Public key						Public key				
Signature						Signature				
ion:		Intermediate CA: i1.ingress.mycistern.de			Intermediate CA: i1.dev.n	lev.mycistern.de			Device	
ediate CAs omated cert ation without		Issuer's name			Issuer's name Public key				identity <i>(server</i>	
RootCA at		Public key						1	verify)	
Sigr	າຣ	Signature			Signature		Signs	Contra		
			RootCA: m	iycistern.de						
	Sign		RootCA: public key Signs			S			ESP3	
		RootCA: si	gnature		√erify server ider Cert + CN check		Contra			
Cistern 4.0 Stefa	istern 4.0 Stefan Smarzly			ed RootCAs for high						

Some MQTT Messages

Periodic sensor updates

sensor/zisterne0001/level { "value":0.942, "type":"level", "unit":"m" }
sensor/zisterne0001/temperature { "value":8.25, "type":"inside_temp", "unit":"C" }
sensor/zisterne0001/temperature { "value":9.06, "type":"outside_temp", "unit":"C" }

Update control

sensor/zisterne0001/update

{*"url"*:"<u>https://myzisterne.de/firmware/zisterne_abcdefg_v0.1.bin</u>"} sensor/zisterne0001/update/revert

What renders the project challenging and unexpected (for me) in real-life?

Constructional Conditions

 Massive three-part division causes unexpected ultrasound reflection

Constructional Conditions (2)

→ Offset sensor to align it as good as possible

Digging an Underground Cable into the Soil

- Harder than expected for a distance of 3m and depth around 15-25cm
- No worries: only 12V applied

Harsh Weather Conditions

- Sensor box lives outside of cistern due to very bad Wifi reception inside of it
- Keep it dry with a good housing
- Use a flower pot upside-down as secondary guard

Electronics Side: Lessons Learned

- Cheap Ultrasound module fails measuring at some point in time
- No reset line exists
- Add transistor to cut power if measurement fails
- <u>Bi-directional logic-level shifter</u> will provide power via IO pins if done wrongly

 \rightarrow Certain state of pins needed to actually reset it

Disclaimer: Computer Science background here ;)

Cistern 4.0 | Stefan Smarzly

Copyright: https://hackspark.fr/en/electronics/1395-waterproof-ul trasonic-module-jsn-sr04t.html

Electronics Side: Lessons Learned (2)

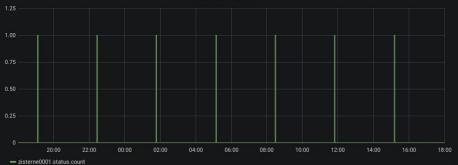
- Expensive buck converter dies after applying 5V to V_OUT (for debugging)
- Cheap buck converter replacement **almost** does the job
- Connect to ESP32 board \rightarrow WIFI very unreliable or even not working at all
- Add proper capacitor to $V_OUT \rightarrow WIFI$ stable

Disclaimer: Computer Science background here ;)

Copyright: Fabulous own work

Demo

Kibana View


Zisterne -

n 🖗

MQTT Verbindungsaufbau

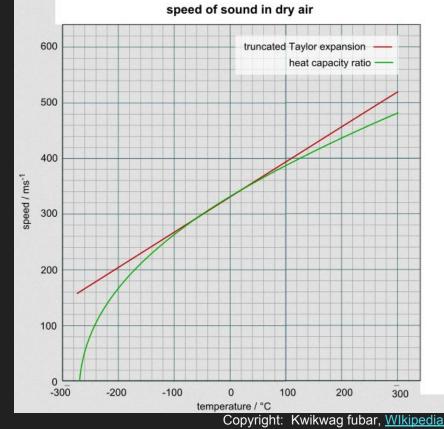
Long-term Goals

- Make it lasting (observation ongoing ;)
- Make my parents happy

Vision

- Make cloud connection optional
- Move processing logic into decentralized components

Resources


- OSA Icon Library 13.05: icons for graphical illustrations
 - Website: <u>http://www.opensecurityarchitecture.org/cms/library/icon-library</u>
 - License: Creative Commons Share-alike
- Awesome tutorial about creating a Certificate Chain of Trust
 - Website: <u>https://jamielinux.com/docs/openssl-certificate-authority/introduction.html</u>

Backup Slides

Ultrasound: Calculate Distance

 $d_{surface} = t_{travel} * (331.4 + 0.6T_C) / 2 [m]$

- Speed of Sound depends on multitude of environmental facts
- In our case: temperature has the biggest impact
- \rightarrow Not implemented, to be done :)

